K15U 0337
Reg. No.: \qquad
Name : \qquad

III Semester B.Sc. Degree (CCSS-2014 Admn. - Regular) Examination, November 2015 COMPLEMENTARY COURSE IN STATISTICS FOR MATHS AND COMPUTER SCIENCE
 3C035TA (Maths and Comp. Sci.) : Standard Probability Distributions

Time: 3 Hours
Max. Marks : 40
PART-A

Answer all questions. Each question carries one mark:

1. A player is to toss 3 coins. He wins Rs. 10 if three heads appear, Rs. 5 if two heads appear, Re. 1 if one head appears. He will lose Rs. 12 no heads appears. Then the expected amount is \qquad
2. Define conditional expectation.
3. Define binomial distribution.
4. The continuous distribution with lack of memory property is \qquad
5. Write down the p. d. f. of a two parameter gamma distribution.
6. State Chebychev's inequality.
PART-B

Answer any six questions. Each question carries two marks :
7. Distinguish between $\mathrm{r}^{\text {th }}$ raw moment and $\mathrm{r}^{\text {th }}$ central moment.
8. Define characteristic function. How can we obtain moments from characteristic function?
9. Derive the m. g. f. of a bernoulli distribution.
10. State and prove additive property of poison distribution.
11. If Z has a standard normal distribution find $\mathrm{P}(-1<\mathrm{Z}<3)$.
12. Find cumulant generating function of a normal distribution.
13. Distinguish between type - I beta and type - II beta distributions.
14. State Central Limit Theorem.
$(6 \times 2=12)$

PART-C

Answer any four questions. Each question carries three marks :
15. Prove that $E[E(X \mid Y)]=E(X)$.
16. Obtain Poison distribution as a limiting case of binomial distribution.
17. If X is uniformly distributed with mean 1 and variance $\frac{4}{3}$, find $P(X<0)$.
18. Let X be a random variable with distribution function

$$
F(X)=\left\{\begin{array}{l}
0: x \leq 0 \\
1-e^{-\lambda x}: x>0
\end{array}\right.
$$

Obtain the m. g. f. and first four moments.
19. Let X be a random variable taking values $-1,0,1$ with probabilities $\frac{1}{8}, \frac{6}{8}, \frac{1}{8}$ respectively. Using Chebychev's inequality find an upper bound of the probability $P\{|X| \geq 1\}$.
20. Examine whether WLLN holds for the sequence $\left\{X_{k}\right\}$ of random variables defined as follows :

$$
P\left(X_{k}=-2^{k}\right)=P\left(X_{k}=2^{k}\right)=2^{-(2 k+1)}, P\left(X_{k}=0\right)=1-2^{-(2 k+1)} .
$$

PART - D

Answer any 2 questions. Each question carries 5 marks :
21. A pair of fair dice is tossed. Let X and Y be random variables such that X denotes the maximum of the numbers and Y denotes the sum of the numbers. Find $E(X)$ and $E(Y)$.
22. Derive the recurrence relation for the central moments of a Poison distribution.
23. What are the important properties of a normal distribution.
24. State and prove Weak Law of Large Numbers.

